January 18, 2021

Clinical Reports

  • SARS-CoV-2 encephalitis is a cytokine release syndrome: evidence from cerebrospinal fluid analyses
    Recent findings indicated that SARS-CoV-2 related neurological manifestations involve cytokine release syndrome along with endothelial activation, blood brain barrier dysfunction, and immune‐mediated mechanisms. Very few studies have fully investigated the CSF correlates of SARS-CoV-2 encephalitis. Patients with PCR-confirmed SARS-CoV-2 infection and encephalitis (COV-Enc), encephalitis without SARS-CoV-2 infection (ENC) and healthy controls (HC) underwent an extended panel of CSF neuronal (NfL, T-tau), glial (GFAP, TREM2, YKL-40) and inflammatory biomarkers (IL-1β, IL-6, Il-8, TNF- α, CXCL-13 and β2-microglobulin). Thirteen COV-Enc, 21 ENC and 18 HC entered the study. In COV-Enc cases, CSF was negative for SARS-CoV-2 real-time PCR but exhibited increased IL-8 levels independently from presence of pleocytosis/hyperproteinorracchia. COV-Enc patients showed increased IL-6, TNF- α, and β2-microglobulin and glial markers (GFAP, sTREM-2, YKL-40) levels similar to ENC but normal CXCL13 levels. Neuronal markers NfL and T-Tau were abnormal only in severe cases. SARS-CoV-2-related encephalitis were associated with prominent glial activation and neuroinflammatory markers, whereas neuronal markers were increased in severe cases only. The pattern of CSF alterations suggested a cytokine-release syndrome as the main inflammatory mechanism of SARS-CoV-2 related encephalitis.

  • Evolution of antibody immunity to SARS-CoV-2
    Authors report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. IgM and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 4 months after the onset of coronavirus disease-2019 (COVID-19), using immunofluorescence, or polymerase chain reaction, revealed persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 volunteers. Memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.

Antiviral Therapeutics and Vaccines

  • Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine
    Authors report on a multicenter, placebo-controlled, phase 1–2a trial of a candidate vaccine, Ad26.COV2.S, a recombinant, replication-incompetent adenovirus serotype 26 (Ad26) vector encoding a full-length and stabilized SARS-CoV-2 spike protein. Healthy adults between the ages of 18 and 55 years (cohort 1) and those 65 years of age or older (cohort 3) were randomly assiange to receive the Ad26.COV2.S vaccine at a dose of 5×10
    10 viral particles (low dose) or 1×1011 viral particles (high dose) per milliliter or placebo in a single-dose or two-dose schedule. The primary end points were the safety and reactogenicity of each dose schedule. After the administration of the first vaccine dose in 805 participants in cohorts 1 and 3 and after the second dose in cohort 1, the most frequent solicited adverse events were fatigue, headache, myalgia, and injection-site pain. The most frequent systemic adverse event was fever. Systemic adverse events were less common in cohort 3 than in cohort 1 and in those who received the low vaccine dose than in those who received the high dose. Reactogenicity was lower after the second dose. Neutralizing-antibody titers against wild-type virus were detected in 90% or more of all participants on day 29 after the first vaccine dose (geometric mean titer [GMT], 224 to 354) and reached 100% by day 57 with a further increase in titers (GMT, 288 to 488), regardless of vaccine dose or age group. Titers remained stable until at least day 71. A second dose provided an increase in the titer by a factor of 2.6 to 2.9 (GMT, 827 to 1266). Spike-binding antibody responses were similar to neutralizing-antibody responses. On day 14, CD4+ T-cell responses were detected in 76 to 83% of the participants in cohort 1 and in 60 to 67% of those in cohort 3, with a clear skewing toward type 1 helper T cells. CD8+ T-cell responses were robust overall but lower in cohort 3.

  • Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial
    In this phase 1/2 trial, authors investigated CoronaVac (Sinovac Life Sciences, Beijing, China), an inactivated vaccine candidate against COVID-19, containing inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for its safety, tolerability and immunogenicity. Healthy adults aged 18–59 years were recruited from the community in Suining County of Jiangsu province, China. The experimental vaccine for the phase 1 trial was manufactured using a cell factory process (CellSTACK Cell Culture Chamber 10, Corning, Wujiang, China), whereas those for the phase 2 trial were produced through a bioreactor process (ReadyToProcess WAVE 25, GE, Umea, Sweden). The phase 1 trial was done in a dose-escalating manner. At screening, participants were initially separated (1:1), with no specific randomisation, into two vaccination schedule cohorts, the days 0 and 14 vaccination cohort and the days 0 and 28 vaccination cohort, and within each cohort the first 36 participants were assigned to block 1 (low dose CoronaVac [3 μg per 0·5 mL of aluminium hydroxide diluent per dose) then another 36 were assigned to block 2 (high-dose Coronavc [6 μg per 0·5 mL of aluminium hydroxide diluent per dse]). Within each block, participants were randomly assigned (2:1), using block randomisation with a block size of six, to either two doses of CoronaVac or two doses of placebo. In the phase 2 trial, at screening, participants were initially separated (1:1), with no specific randomisation, into the days 0 and 14 vaccination cohort and the days 0 and 28 vaccination cohort, and participants were randomly assigned (2:2:1), using block randomisation with a block size of five, to receive two doses of either low-dose CoronaVac, high-dose CoronaVac, or placebo. Participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was adverse reactions within 28 days after injection in all participants who were given at least one dose of study drug (safety population). The primary immunogenic outcome was seroconversion rates of neutralising antibodies to live SARS-CoV-2 at day 14 after the last dose in the days 0 and 14 cohort, and at day 28 after the last dose in the days 0 and 28 cohort in participants who completed their allocated two-dose vaccination schedule (per-protocol population). Between April 16 and April 25, 2020, 144 participants were enrolled in the phase 1 trial, and between May 3 and May 5, 2020, 600 participants were enrolled in the phase 2 trial. 743 participants received at least one dose of investigational product (n=143 for phase 1 and n=600 for phase 2; safety population). In the phase 1 trial, the incidence of adverse reactions for the days 0 and 14 cohort was seven (29%) of 24 participants in the 3 ug group, nine (38%) of 24 in the 6 μg group, and two (8%) of 24 in the placebo group, and for the days 0 and 28 cohort was three (13%) of 24 in the 3 μg group, four (17%) of 24 in the 6 μg group, and three (13%) of 23 in the placebo group. The seroconversion of neutralizing antibodies on day 14 after the days 0 and 14 vaccination schedule was seen in 11 (46%) of 24 participants in the 3 μg group, 12 (50%) of 24 in the 6 μg group, and none (0%) of 24 in the placebo group; whereas at day 28 after the days 0 and 28 vaccination schedule, seroconversion was seen in 20 (83%) of 24 in the 3 μg group, 19 (79%) of 24 in the 6 μg group, and one (4%) of 24 in the placebo group. In the phase 2 trial, the incidence of adverse reactions for the days 0 and 14 cohort was 40 (33%) of 120 participants in the 3 μg group, 42 (35%) of 120 in the 6 μg group, and 13 (22%) of 60 in the placebo group, and for the days 0 and 28 cohort was 23 (19%) of 120 in the 3 μg group, 23 (19%) of 120 in the 6 μg group, and 11 (18%) of 60 for the placebo group. Seroconversion of neutralising antibodies was seen for 109 (92%) of 118 participants in the 3 μg group, 117 (98%) of 119 in the 6 μg group, and two (3%) of 60 in the placebo group at day 14 after the days 0 and 14 schedule; whereas at day 28 after the days 0 and 28 schedule, seroconversion was seen in 114 (97%) of 117 in the 3 μg group, 118 (100%) of 118 in the 6 μg group, and none (0%) of 59 in the placebo group. Taking safety, immunogenicity, and production capacity into account, the 3 μg dose of CoronaVac is the suggested dose for efficacy assessment in future phase 3 trials.

  • Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape
    For passive immunization efforts, nanobodies have size and cost advantages over conventional antibodies. Authors generated four neutralizing nanobodies that target the receptor-binding domain of the SARS-CoV-2 spike protein. Two distinct binding epitopes were defined using x-ray crystallography and cryo-electron microscopy. Based on the structures, multivalent nanobodies were engineered with more than 100-fold improved neutralizing activity than monovalent nanobodies. Biparatopic nanobody fusions suppressed the emergence of escape mutants. Several nanobody constructs neutralized through receptor-binding competition, while other monovalent and biparatopic nanobodies triggered aberrant activation of the spike fusion machinery. These premature conformational changes in the spike protein forestalled productive fusion, and rendered the virions non-infectious.

Situation Dashboards

World_Health_Organization_logo_logotype

World Health Organization (WHO)

Novel Coronavirus (COVID-19) Situation from World Health Organization (WHO)
university-logo-small-horizontal-blue-no-clear-space-51c7fb4524

Johns Hopkins University (JHU)

Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at JHU
1point3acres

COVID-19 in US and Canada

1Point3Acres Real-Time Coronavirus (COVID-19) Updates in US and Canada with Credible Sources
image

Genomic Epidemiology COVID-19

Genomic Epidemiology of (COVID-19) Maintained by the Nextstrain team, enabled by data from GISAID.

Sources for COVID-19 Information

World_Health_Organization_logo_logotype

World Health Organization (WHO)

1280px-US_CDC_logo.svg

Centers for Disease Control, US

ProMED-Logo

International Society for Infectious Diseases

twiv-logo

This Week in Virology (TWIV)

Receive updates about Parasites without Borders initiatives, developments, and learn more about parasites by subscribing to our periodic newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Parasites Without Borders

Un recurso educativo integral sobre todos los aspectos de las enfermedades parasitarias y su impacto en la humanidad en todo el mundo.

¡Done a los Parásitos Sin Fronteras hoy!

Ayude a llevar la información médica y biológica más reciente sobre enfermedades causadas por parásitos eucariotas a todos los médicos y estudiantes de medicina en los Estados Unidos.

Scroll to Top